6 minute read

原文 A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models

部分参考 EM算法(Expectation Maximization)


1. Maximum-likelihood

Recall the definition of the maximum-likelihood estimation problem. We have a density function $p(x \vert \Theta)$ that is governed by the set of parameters $\Theta$. We also have a data set of size $m$, supposedly drawn from this distribution, i.e., $\mathcal{X} = { x^{(1)},x^{(2)},\cdots,x^{(m)} }$. We assume that these data vectors are independent and identically distributed (i.i.d.) with distribution $p$. Therefore, the resulting density for the samples is:

\[\begin{align} p(\mathcal{X} \vert \Theta) = \prod_{i=1}^{m}{p(x^{(i)} \vert \Theta)} = \mathcal{L}(\Theta \vert \mathcal{X}) \end{align}\]
  • 注 1-1:举个例子,假设 $\mathcal{X}$ 是某班上 $m$ 个学生的成绩,最常见的一个模型就是 “假设 $\mathcal{X}$ 满足 Gaussian 分布”。于是问题来了:$\mu$ 和 $\sigma$ 是多少?对于这个具体的问题,$\mu$ 和 $\sigma$ 是好求的,直接计算统计量就好了。现在我们把问题抽象化,或者说是 generalize 一下:如果 $\mathcal{X}$ 满足某个分布 $D(\Theta)$,如何估计 $\Theta$?$\Theta$ 可能是单个的 parameter,或者是一个 parameter vector (e.g. $\Theta = (\mu, \sigma^2)$)。
  • 注 1-2:另外注意这里虽然写的是 $p$,但的确是 density function(我们常用 $f(x)$ 表示)而不是 mass function。
  • 注 1-3:我们直接用了 $p$ 来表示 distribution(”iid with distribution $p$”),联系到 “看到 $f(x) = \frac{1}{\sqrt{2 \pi \sigma^2} } e^{ - \frac{(x-\mu)^2}{2 \sigma^2}}$ 就知道是 Gaussian distribution”,这么直接指代也没什么不妥。

This function $\mathcal{L}(\Theta \vert \mathcal{X})$ is called the likelihood of the parameters given the data, or just the likelihood function. The likelihood is thought of as a function of the parameters $\Theta $ where the data $ \mathcal{X}$ is fixed. In the maximum likelihood problem, our goal is to find the $\Theta $ that maximizes $ \mathcal{L}$. That is, we wish to find $ Theta^*$ where

\[\begin{align} \Theta^* = \underset{\Theta}{\operatorname{argmax}} \mathcal{L}(\Theta \vert \mathcal{X}) \end{align}\]

Often we maximize $\ell(\Theta \vert \mathcal{X}) = \log(\mathcal{L}(\Theta \vert \mathcal{X}))$ instead because it is analytically easier.

  • 注 1-4:我们在估计 Gaussian 分布的 $\mu$ 和 $\sigma$ 时不这么干是因为我们知道样本统计量已经是很好的估计了,不需要走极大似然估计这么一个搜索的过程
  • 注 1-5:至于具体的求法,第一个想到的肯定是拿 $\ell(\Theta \vert X)$ 对 $\Theta$ 求导(如果 $\Theta$ 是 parameter vector,就对 vector 的各个小项求偏导,比如 $\frac{\partial \ell}{\partial \mu}$ 和 $\frac{\partial \ell}{\partial \sigma}$)。然后还有牛顿法或者梯度下降法等等,这里就不展开了。

For many problems, however, it is not possible to find such analytical expressions, and we must resort to more elaborate techniques.

2. Basic EM

The EM algorithm is one such elaborate technique.

The EM algorithm is a general method of finding the maximum-likelihood estimate of the parameters of an underlying distribution from a given data set when the data is incomplete or has missing values.

There are two main applications of the EM algorithm. The first occurs when the data indeed has missing values, due to problems with or limitations of the observation process. The second occurs when optimizing the likelihood function is analytically intractable but when the likelihood function can be simplified by assuming the existence of and values for additional but missing (or hidden) parameters. The latter application is more common in the computational pattern recognition community.

  • 注 2-1:这两种情况都可以看做是传说中的 latent variable
    • latent: [ˈleɪtnt], Existing but concealed or inactive
      • He has a latent talent for acting that he hasn’t had a chance to express yet
      • {a latent infection}
    • 举个例子就好懂了:我现在告诉你,$\mathcal{X}$ 是某班上 $m$ 个学生的成绩没错,但是这 $m$ 个成绩中,一部分是语文成绩,剩下的是数学成绩;但是哪些是语文哪些是数学我没法告诉你。
    • 所以 latent variable 简单理解就是:
      • 一个 feature,我知道它的定义,比如 $\mathcal{Y} = 0$ 表示语文成绩,$\mathcal{Y} = 1$ 表示数学成绩
      • 但是我不知道这个 feature 在 dataset 中各个 point 里的值
    • latent variable 为什么会搅局呢?是因为我们贪心。我们企图用两个 feature 来建模,哪怕其中一个 feature 是 missing value
      • 第一种情况是 “对不起啊,我们真的有 missing value,而且是一整 column 的 missing value”
      • 第二种情况是 “虽然没有观测到 latent feature 的值,但是加上 latent feature 我们这个模型更 make sense”
      • 两种情况都是 “尽管如此,请将全 NA 的这一 column 也算作 feature 来建模吧,拜托了!”

As before, we assume that data $\mathcal{X}$ is observed and is generated by some distribution. We call $\mathcal{X}$ the incomplete data. We assume that a complete data set exists $\mathcal{Z} = (\mathcal{X},\mathcal{Y})$ and also assume (or specify) a joint density function:

\[\begin{align} p(\mathbf{z} \vert \Theta) = p(\mathbf{x},\mathbf{y} \vert \Theta) = p(\mathbf{y} \vert \mathbf{x},\Theta)p(\mathbf{x} \vert \Theta) \end{align}\]
  • 注 2-2:这里粗体的 $\mathbf{x}$ 相当于 $x^{(i)}$;$\mathbf{y}$ 和 $\mathbf{z}$ 同理
  • 注 2-3:Joint probability distribution - wikipedia 的写法是:
    • $f_{X,Y}(x,y) = f_{Y \mid X}(y \mid x)f_X(x) = f_{X \mid Y}(x \mid y)f_Y(y)$
    • where $f_{Y \mid X}(y \mid x)$ and $f_{X \mid Y}(x \mid y)$ give the conditional distributions of $Y$ given $X = x$ and of $X$ given $Y = y$ respectively,
    • and $f_X(x)$ and $f_Y(y)$ give the marginal distributions for $X$ and $Y$ respectively.

With this new density function, we can define a new likelihood function, $\mathcal{L}(\Theta \vert \mathcal{Z}) = \mathcal{L}(\Theta \vert \mathcal{X},\mathcal{Y}) = p(\mathcal{X},\mathcal{Y} \vert \Theta)$, called the complete-data likelihood. Note that this function is in fact a random variable since the missing information $\mathcal{Y}$ is unknown, random, and presumably governed by an underlying distribution. That is, we can think of $\mathcal{L}(\Theta \vert \mathcal{X},\mathcal{Y}) = h_{\mathcal{X},\Theta}(\mathcal{Y})$ for some function $h_{\mathcal{X},\Theta}(\cdot)$ where $\mathcal{X}$ and $\Theta$ are constant and $\mathcal{Y}$ is a random variable. The original likelihood $\mathcal{L}(\Theta \vert \mathcal{X})$ is referred to as the incomplete-data likelihood function.

The EM algorithm first finds the expected value of the complete-data log-likelihood $\log \, p(\mathcal{X},\mathcal{Y} \vert \Theta)$ with respect to the unknown data $\mathcal{Y}$ given the observed data $\mathcal{X}$ and the current parameter estimates $\Theta^{(i-1)}$. That is, we define:

\[\begin{equation} Q(\Theta \mid \Theta^{(i-1)}) = E \left [ \log \, p(\mathcal{X},\mathcal{Y} \vert \Theta) \mid \mathcal{X}, \Theta^{(i-1)} \right ] \tag{1} \label{eq1} \end{equation}\]

Where $\Theta^{(i-1)}$ are the current parameters estimates that we used to evaluate the expectation and $\Theta$ are the new parameters that we optimize to increase $Q$.

The key thing to understand is that $\mathcal{X}$ and $\Theta^{(i-1)}$ are constants, $\Theta$ is a normal variable that we wish to adjust, and $\mathcal{Y}$ is a random variable governed by the distribution $f_{\mathbf{Y}}(\mathbf{y} \vert \mathcal{X}, \Theta^{(i-1)})$. The right side of Equation $(\ref{eq1})$ can therefore be re-written as:

\[\begin{align} E \left [ \log \, p(\mathcal{X},\mathcal{Y} \vert \Theta) \mid \mathcal{X}, \Theta^{(i-1)} \right ] & = \int_{\mathbf{y} \in \Upsilon}{f_{\mathcal{Y}}(\mathbf{y} \vert \mathcal{X}, \Theta^{(i-1)}) \, \log \, p(\mathcal{X},\mathbf{y} \vert \Theta) \, d\mathbf{y} } \newline & = \sum_{\mathbf{y} \in \Upsilon}{P_{\mathcal{Y}}(\mathbf{y} \vert \mathcal{X}, \Theta^{(i-1)}) \, \log \, p(\mathcal{X},\mathbf{y} \vert \Theta)} \tag{2} \label{eq2} \end{align}\]
  • 注 2-4:一般有 $E[h(Y) \vert X = x] = \int_{y}{h(y)f_{Y \vert X}(y \vert x)dy}$
  • 注 2-5:回头看 $(\ref{eq2})$ 式:$\mathcal{Y}$ 是未知的,但是我可以假设 $f_{\mathcal{Y}}$,比如假设它是一个 Gaussian distribution;$p$ 是假设的;$\mathcal{X}$ 是已知的;$\Theta^{(i-1)}$ 是已知的;再结合取值范围 $\mathbf{y} \in \Upsilon$,求 $\Theta$ 使 $(\ref{eq2})$ 式最大化是完全可行的。

Note that $f_{\mathcal{Y}}(\mathbf{y} \vert \mathcal{X}, \Theta^{(i-1)})$ is the marginal distribution of the unobserved data $\mathcal{Y}$ and is dependent on both the observed data $\mathcal{X}$ and on the current parameters $\Theta^{(i-1)}$, and $\Upsilon$ is the space of values $\mathbf{y}$ can take on. In the best of cases, this marginal distribution is a simple analytical expression of the assumed parameters $\Theta^{(i-1)}$ and perhaps the data. In the worst of cases, this density might be very hard to obtain. Sometimes, in fact, the density actually used is $f_{\mathcal{Y},\mathcal{X}}(\mathbf{y},\mathcal{X} \vert \Theta^{(i-1)}) = f_{\mathcal{Y}}(\mathbf{y} \vert \mathcal{X}, \Theta^{(i-1)}) f_{\mathcal{X}}(\mathcal{X} \vert \Theta^{(i-1)})$ but this doesn’t effect subsequent steps since the extra factor, $f_{\mathcal{X}}(\mathcal{X} \vert \Theta^{(i-1)})$ is not dependent on $\Theta$.

The evaluation of this expectation $(\ref{eq2})$ is called the E-step of the algorithm.

The second step (the M-step) of the EM algorithm is to maximize the expectation we computed in the first step. That is, we find:

\[\begin{align} \Theta^{(i)} = \underset{\Theta}{\operatorname{argmax}} Q(\Theta \mid \Theta^{(i-1)}) \end{align}\]
  • 注 2-6:我们可以随机取一个初始值给 $\Theta^{(1)}$

These two steps are repeated as necessary. Each iteration is guaranteed to increase the loglikelihood and the algorithm is guaranteed to converge to a local maximum of the likelihood function.

A modified form of the M-step is to, instead of maximizing $Q(\Theta \mid \Theta^{(i-1)})$, we find some $\Theta^{(i)}$ such that $Q(\Theta^{(i)} \mid \Theta^{(i-1)}) > Q(\Theta \mid \Theta^{(i-1)})$. This form of the algorithm is called Generalized EM (GEM) and is also guaranteed to converge.


3. Finding Maximum Likelihood Mixture Densities Parameters via EM4. Learning the parameters of an HMM, EM, and the Baum-Welchalgorithm 这两节太吓人了,需要研究的时候再搬运。

最后强调一点:EM 的目标是参数估计,所以以后遇到有算法说用到了 EM,你自己要问自己这几个问题:

  • latent variable $\mathcal{Y}$ 是什么数据?
  • $p$ 是什么分布?
  • $\Theta$ 的组成?
  • $f_{\mathcal{Y}}$ 是假设的什么分布?

Digression: Jensen’s Inequality

不少中文 blog 里的证明都用到了 Jensen’s Inequality,这里姑且提一下:

  • For any concave function $f$, $E[f(X)] \leq f(E[X])$
    • 注意老外的 concave function (凹函数) 是开口向下的,也叫 concave downwards,比如 $y = -x^2$
  • For any convex function $f$, $E[f(X)] \geq f(E[X])$
    • convex function 是凸函数,是开口向上的,比如 $y = x^2$

Comments